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A doped graphene layer in the integer quantum-Hall regime reveals a highly unusual particle-hole excitation
spectrum, which is calculated from the dynamical polarizability in the random-phase approximation. We find
that the elementary neutral excitations in graphene in a magnetic field are unlike those of a standard two-
dimensional electron gas: in addition to the upper-hybrid mode, the particle-hole spectrum is reorganized in
linear magnetoplasmons that disperse roughly parallel to �=vFq, instead of the usual horizontal �almost
dispersionless� magnetoexcitons. These modes could be detected in an inelastic light-scattering experiment.
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I. INTRODUCTION

Particle-hole excitations in a standard two-dimensional
electron gas are incoherent and form a continuum in the
energy-momentum plane.1,2 This continuum does not have a
uniform weight but features some structure that hints at pos-
sible coherent excitations. If one includes interactions be-
tween the electrons, coherent excitations may emerge from
the continuum. This is the case of the plasmon, which ap-
pears once long-range Coulomb interactions are taken into
account. The plasmon mode is long lived outside the con-
tinuum but it is Landau damped once it penetrates it. If in-
stead of including interactions, one turns on a magnetic field,
the electronic energy is quenched into Landau levels �LLs�,
and the particle-hole continuum becomes discrete in energy,
while remaining essentially continuous in the momentum di-
rection. When both the magnetic field and Coulomb interac-
tions are considered, the continuum is reorganized in
magnetoexcitons—transverse excitations that now acquire a
dispersion3—and an upper-hybrid mode4 exists outside what
used to be the continuum.

Graphene, a recently discovered carbon material, is at-
tracting a lot of interest due to its unique electronic proper-
ties �see Ref. 5�. Electrons in graphene may be viewed as a
particular form of the two-dimensional electron gas �2DEG�.
However, due to its underlying triangular lattice with a two-
atom basis, the electrons of graphene are described by a
massless Dirac equation instead of the usual effective-mass
Schrödinger equation. The screening properties of graphene
are different from that of the 2DEG, as it may be seen from
the polarization and dielectric functions in the two cases.6–10

Furthermore, the single-particle spectral function reveals the
particular chiral properties of the Dirac-type
quasiparticles.11,12 Another salient physical consequence is a
peculiar integer quantum-Hall effect.13,14

In this paper, we show that collective excitations of
graphene in a strong magnetic field are much unlike that of
the standard 2DEG �from now on, we use the term 2DEG to
denote a standard 2DEG with a parabolic band dispersion, in
contrast to graphene�. The magnetic field also reorganizes the
particle-hole continuum but instead of revealing horizontal
lines, diagonal lines emerge. When Coulomb interactions are
included within the random-phase approximation �RPA�, the

diagonal excitations acquire coherence. We shall refer to
them as linear magnetoplasmons in order to distinguish them
from the upper-hybrid mode—which is also present and
which may be considered as the plasmon mode modified by
the magnetic field—and from the usual �horizontal� magne-
toexcitons, which are blurred in graphene. Several recent the-
oretical works considered collective excitations in graphene
in a magnetic field, concentrating either on
magnetoexcitons15–17 or on the plasmon mode.18,19 Here, we
show that concentrating on horizontal magnetoexcitons, in
spite of its success in the 2DEG,3 is not sufficient to reveal
the complete structure of the particle-hole excitation spec-
trum �PHES� in graphene, which is dominated by linear
magnetoplasmons that disperse roughly parallel to �=vFq.

The paper is organized as follows. In Sec. II we calculate
the polarization function of a 2DEG and that of doped
graphene in the integer quantum-Hall regime. In Sec. III we
discuss the main features of the noninteracting PHES of
graphene and a 2DEG and the different nature of the collec-
tive modes in each case, once electron-electron interactions
are taken into account. The conclusions are summarized in
Sec. IV.

II. POLARIZATION FUNCTION

The polarization operator ��q ,�� may be viewed as the
particle-hole pair propagator, the poles of which yield the
dispersion relation and damping of the collective excitations.
Its imaginary part is related to the dynamical structure factor
by

S�q,�� = −
1

�
Im ��q,�� ,

which plays the role of a spectral function for the particle-
hole propagator. The PHES is defined as the �� ,q� region of
nonzero spectral weight S�q ,���0. Peaks in the spectral
density are interpreted as collective excitations; their disper-
sion relation and damping may be extracted from the posi-
tion and the width of the peaks �see, e.g., Sec. 3.2.7. in Ref.
1�.

The Fourier-transformed polarizability for noninteracting
electrons �we use a unit system with ��1�
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�0�q,�� =� d��dk

i�2��3 Tr�G0�k,���G0�k + q,�� + ��� �1�

is given in terms of the free single-particle Green’s functions
G0�q ,��. Whereas, as we review below, the single-particle
Green’s functions for the conventional 2DEG are simple sca-
lar functions, those of graphene are 2�2 matrices due to the
two sublattices A and B. The trace in Eq. �1� is, thus, relevant
only in the case of graphene.

A. Polarizability in the 2DEG

The Hamiltonian for electrons in the conventional 2DEG
is simply that of free electrons with a band mass mb, H
=�2 /2mb, where the gauge-invariant momentum operators,
�=p+eA�r� takes into account the coupling to the magnetic
field B=��A, where A is the vector potential. The opera-
tors � may be expressed in terms of the usual ladder opera-
tors with the help of

a =
lB

�2
��x − i�y�, a† =

lB

�2
��x + i�y� ,

which satisfy the commutation relations �a ,a†�=1, and lB

=1 /�eB is the magnetic length. One obtains the usual eigen-
states, �n ,m	, and the eigenvalue equation H�n ,m	=�c�n
+1 /2��n ,m	, where �c=1 /mblB

2 =eB /mb is the cyclotron fre-
quency. The result is the usual LL spectrum where the levels
are labeled by the quantum number n, the eigenvalue of a†a.
The additional quantum number m is associated with the
guiding center operator, and varies between 0 and NB−1,
where NB=A /2�lB

2 , in terms of the sample area A.
With the help of the eigenstates �n ,m	, one may express

the Green’s functions G0�q ,�� for noninteracting electrons
in Fourier space, as

G0�q,�� = 

n,m

�q�n,m	�n,m�r = 0	
� − �n + i� sgn��n�

, �2�

where �n��c�n+1 /2�−�F is the energy of the nth LL with
respect to the Fermi energy �F, which we choose to lie be-
tween two LLs of the conduction band �integer quantum-
Hall regime�, and � accounts for disorder-induced level
broadening ��→0+ in the clean limit�.

Equation �2� allows us to calculate the polarization func-
tion �1� for the 2DEG

�0�q,�� = 

n=0

NF



n�=NF+1

	 Fnn��q�

�n − n���c + � + i�
+ ��+ → �−� ,

where NF is the index of the last occupied LL, which is fixed
by the filling factor, and �+→�− indicates the replacement
�+ i�→−�− i�. The form factors for the 2DEG read1

Fnn��q� = e−lB
2q2/2� lB

2q2

2
n
−n� n�!

n
!
�Ln�

n
−n�� lB
2q2

2
�2

�3�

with n
�max�n ,n�� and n��min�n ,n��, and Ln
m are asso-

ciated Laguerre polynomials.

B. Polarizability in graphene

For graphene in a magnetic field, the electronic Hamil-
tonian may be written as5

H =
�2vF

lB
� 0 a

a† 0
 , �4�

where vF=3tacc /2 is the Fermi velocity, in terms of the
nearest-neighbor hopping integral t�3 eV, and the carbon-
carbon distance acc�1.4 Å. Strictly speaking, Eq. �4� is
only valid on one of the valleys, namely, K, that of the valley
K� being −H�. However, we concentrate, here, only on pro-
cesses that do not couple the two different valleys, such that
a discussion of the Hamiltonian �4� is sufficient, and the
twofold valley degeneracy may be accounted for by a simple
factor of 2.

The Hamiltonian �4� yields the relativistic LL spectrum

��n = �
vF

lB

�2n ,

where � denotes the band index, �=+ for the conduction,
and �=− for the valence band. The associated eigenstates are
the 2 spinors

�,n,m =
1
�2

��n − 1,m	
��n,m	

 for n � 1,

n=0,m = � 0

�n = 0,m	  for n = 0,

where m=0,1 , . . . ,NB−1, and �n ,m	 are the corresponding
eigenstates of the Hamiltonian with quadratic dispersion, in-
troduced in the previous subsection. Due to the 2-spinor
structure of the wave functions in graphene, the associated
single-particle Green’s functions are 2�2 matrices

G�;���
0 �k,�� = 


�



n

f�,���;�n�k + �K�

� − ��n + i� sgn���n�
�5�

with �=A�B� for electrons on the A�B� sublattice, �=+�−�
for electrons in the K�K�� valley, and k is the electron mo-
mentum measured from the Dirac points, �K=�4� /3�3aux.
In the denominator, we have defined ��n���n−�F, the en-
ergy difference between the level ��n, and the Fermi energy
�F. Furthermore, we neglect Zeeman and possible valley
splittings. The matrix f�n�q� for the K valley is
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fK;�n�q� = 

m
�1n

�2�q�n − 1,m	�n − 1,m�r = 0	 − i�1n
�2n

��q�n − 1,m	�n,m�r = 0	
i�1n

�2n
��q�n,m	�n − 1,m�r = 0	 2n

�2�q�n,m	�n,m�r = 0	
 , �6�

where we have introduced the simplified notation 1n
�

=��1−�n,0� /2, 2n
�=��1+�n,0� /2. The bare polarization

bubble is

�0�q,�� = 

n=1

NF

�n
�F�q,�� + �vac�q,�� , �7�

where the index NF of the last occupied LL is now related to
the filling factor � by �=4NF+2 due to the fourfold spin and
valley degeneracy. There is a nonzero vacuum polarization,
�vac�q ,���−
n=1

Nc �n
�=1�q ,��, the vacuum corresponding to

undoped graphene. Here, Nc is an ultraviolet cutoff20 and

�n
��q,�� = 


��



n�=0

n−1

�nn�
����q,�� + 


��



n�=n+1

Nc

�nn�
����q,��

+ �nn
�−��q,�� . �8�

In the previous expressions, we have used

�nn�
����q,�� �

Fnn�
����q�

��n − ���n� + � + i�
+ ��+ → �−� , �9�

where the form factor is

Fnn�
����q� = e−lB

2q2/2� lB
2q2

2
n
−n�

���1n
�1n�

� ��n� − 1�!
�n
 − 1�!

Ln�−1
n
−n�� lB

2q2

2


+ ��2n
�2n�

� �n�!

n
!
Ln�

n
−n�� lB
2q2

2
�2

. �10�

Notice that Eq. �10� agrees with the form factor obtained in
Ref. 17 but not with those obtained in Refs. 18 and 19.
Because of the presence of nodes in the LL wave functions

�zeros of the Laguerre polynomials�, Fnn�
����q� contains zeros

and, therefore, so does Im �0 as a function of q at fixed �.
These zeros will play an important role when discussing the
structure of the PHES in Sec. III C. Note that �n

��q ,��
=−�n

−��q ,�� and that the n=0 LL does not contribute to the
polarization.

III. RESULTS

The dynamical polarization function of graphene, �graph
0 ,

is now compared to that of the 2DEG, �2DEG
0 .1 For B=0,

�graph
0 has been calculated first in the context of intercalated

graphite6 and later for doped graphene,8,9 resulting in a
particle-hole continuum different from that of a 2DEG. The
edges of the zero-field PHES for graphene and a 2DEG are
drawn as black lines in Fig. 1. While the PHES for a 2DEG

is made of a single region limited by linear-parabolic bound-
aries �see Fig. 1�b��, the PHES in graphene has linear edges
and contains two different regions because of intraband �I�
and interband �II� processes �see Fig. 1�a��. The spectral
weight in graphene is concentrated around the diagonal �
=vFq due to the chirality factor �1+��� cos �� /2,11 which is
the B=0 equivalent of Eq. �10�.

A. Particle-hole excitation spectrum for noninteracting
electrons

In the presence of a magnetic field, the largest contribu-
tion to the polarization also comes from the region around
�=vFq �see Fig. 1�a��. In addition, Im �graph

0 �q ,�� is finite
not only close to the diagonal but also along regions above
and below �=vFq �see the diagonal yellow stripes in Fig.
1�a��. For comparison, in Fig. 1�b�, we show the correspond-
ing density plot1 of Im �2DEG

0 �q ,�� calculated for the same
Fermi momentum kF↔�2NF+1 / lB.

These results reveal the main differences between the
PHES of graphene and that of a 2DEG in the presence of a
magnetic field. While the PHES for a 2DEG �Fig. 1�b�� fea-
tures a set of well-defined horizontal lines, with a slight

(b)(a)

(c) (d)

FIG. 1. �Color online� Density plot of the spectral function
Im ��q ,�� for doping NF=3, ultraviolet cutoff Nc=70, and disor-
der broadening �=0.2vF / lB for graphene �panels �a� and �c�� and
�=0.2�c for a standard 2DEG ��b� and �d��: in the absence of in-
teractions ��a� and �b�� and including interactions in the RPA ��c�
with rs�1 and �d� with rs�3�. The solid lines indicate the zero-
field limits of the PHES and arrows point to the islands discussed in
the text. In panel �a�, label I �II� indicates the intraband �interband�
region of the PHES in graphene.
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modulation parallel to the boundaries of the particle-hole
continuum, that of graphene is remarkably different. Indeed,
its PHES �Fig. 1�a�� is dominated by this modulation, visible
as bright regions in the diagonal, whereas the horizontal lines
are now hardly visible, as a consequence of the nonequidis-
tant LL spacing and the presence of a finite disorder broad-
ening �, as discussed in more detail below �see Sec. III C�.
The PHES is, thus, discretized into diagonal lines �almost
parallel to �=vFq� in the �q ,�� plane. For Fig. 1, we have
chosen �=0.2vF / lB, which is a realistic value for the cur-
rently realized graphene samples.21 Lower values of � lead to
a clearer definition of the horizontal lines �see Fig. 2�a� for a
zoom of the low-energy region of the PHES in a cleaner
system�.

B. Particle-hole excitation spectrum for interacting
electrons (RPA)

Electron-electron interactions yield coherent modes that
emerge, both in the 2DEG and in graphene, from the regions
of highest weight in the PHES. Within the RPA, the renor-
malized polarization function is given by

�RPA�q,�� =
�0�q,��

1 − v�q��0�q,��
,

where v�q�=2�e2 /�b�q� is the unscreened 2D Coulomb po-
tential, �b the dielectric constant, and intervalley processes,
which are suppressed in a / lB, are neglected.22 The results are
shown in Figs. 1�c� and 2�c� for graphene �with rs
�e2 /�bvF�1� and in Figs. 1�d� and 2�d� for a 2DEG �with
rs�2mbe2 /�bkF�1 or 3�. In the 2DEG, Coulomb interac-
tions lead to the appearance of dispersive magnetoexcitons

�see Fig. 2�d��, whereas in graphene, the diagonal lines of the
noninteracting PHES �Fig. 1�a�� become coherent collective
modes: linear magnetoplasmons that are now clearly visible
as peaks in the spectral function. They disperse roughly par-
allel to �=vFq and are more pronounced in the interband
region of the PHES �see Fig. 1�c��. Notice that even in
cleaner samples ��=0.05vF / lB, Fig. 2�c��, the horizontal
structure due to the LL quantization is highly suppressed in
Im �RPA�q ,��. Furthermore, there has been a transfer of
spectral weight from the long-wavelength region of the non-
interacting PHES to the upper-hybrid mode that starts dis-
persing in the gapped region of the spectrum �see Fig. 2�c��.
In a 2DEG, this upper-hybrid mode4 can be seen as the plas-
mon mode modified by the magnetic field. It is a plasmon-
cyclotron collective mode that has a dispersion relation �
= ��c

2+�p
2�1/2, where �p���Fe2q /�b in the long-wavelength

limit. As it is the most intense mode, its square-root behavior
is clearly visible in Fig. 1�d� �in Fig. 2�d� it only appears as
a maximum in the magnetoexcitons dispersion relation� and
also in Figs. 1�c�, 2�c�, 3�b�, and 3�d� for graphene.

C. Discussion

The structure of the PHES in graphene and the 2DEG
may be understood in the following manner. First, one no-
tices that the boundaries �black lines in Fig. 1� are due to the
momentum conservation of the electron-hole pairs. The
boundaries reflect the different B=0 behavior of the disper-
sion relations in graphene �linear in q� as compared to the
2DEG �quadratic in q�. Second, for B�0, the zero-field con-
tinuum becomes chopped into horizontal lines. The main dif-
ference between the PHES in the 2DEG and that in graphene
stems from the different LL quantization.

In the case of the 2DEG, one notices a constant spacing of
the horizontal lines, �=m�c. There are several contributions

(b)(a)

(c) (d)

FIG. 2. �Color online� Density plot of Im ��q ,�� for the low-
energy region, for doping NF=3 and ultraviolet cutoff Nc=70. Pan-
els �a� and �c� correspond to graphene, whereas �b� and �d� corre-
spond to a 2DEG. The disorder broadening �=0.05 in units of vF / lB

and �c, respectively, and the interaction strength rs�1 in panels �c�
and �d�. Notice the different energy scale with respect to Fig. 1.
Arrows indicate islands as discussed in the text.

(b)(a)

(c) (d)

FIG. 3. �Color online� Density plot of Im �RPA�q ,�� for
graphene, for disorder broadening �=0.2vF / lB �plots �a� and �b��
and �=0.05vF / lB �plots �c� and �d��, and doping NF=1 in plots �a�
and �c�, and NF=6 in plots �b� and �d�.
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to each horizontal line from the allowed LL transitions, n
→n�, with m=n�−n. For a given integer m, the number of
contributing LL transitions is the minimal value min�NF
+1,m� of NF+1 and m. The lowest-energy horizontal line
�m=1�, thus, arises from a single LL transition, NF→NF+1.
In this case, the line consists of NF+1 well-separated islands
�see arrows in Figs. 1�b� and 2�b��, which is the name we
give to regions of high spectral weight, and which are sepa-
rated by regions of low spectral weight reflecting the nodes
of the LL wave functions. For larger values of m, several LL
transitions n→n� contribute to the same horizontal line.
Each of these transitions has n+1 islands. Because this num-
ber is different for each transition, the islands that arise from
different transitions overlap and fill in the region of low
spectral weight. As a result, the horizontal lines appear con-
tinuous �compare the m=1 and m=3 horizontal lines in Figs.
1�b� and 2�b�� and the node structure of the LL wave-
function is visible only in form of faint shadows parallel to
the boundaries of the PHES �see Figs. 1�b� and 2�d��.

In graphene, the relativistic LL quantization gives rise to
horizontal lines at energies

� = vFlB
−1��2n� − ��2n� , �11�

where we have assumed that the Fermi energy lies in the
conduction band, an therefore ��=1. In contrast to the
2DEG, with equally spaced LLs, only a single transition �,
n→n� contributes to each horizontal line. As a consequence,
the node structure of the LL wave functions, and therefore
that of the form factor �10�, is clearly visible in every hori-
zontal line and not only in the one of lowest energy �see Fig.
2�a��. This explains the presence of n+1 islands in the hori-
zontal line corresponding to the n→n� transition. These
nodes give rise to well-defined diagonal dark lines of low
spectral weight parallel to the boundaries of the particle-hole
continuum. Another consequence of the relativistic LL struc-
ture is that the density of horizontal lines increases with en-
ergy, contrary to the case of the 2DEG, where all lines are
separated by the constant cyclotron energy �compare Figs.
2�a� and 2�b��. This clear separation of islands at any energy,
together with the rather large number of horizontal lines and
their finite disorder-induced width, leads to a stacking of the
islands of different energies. This is the origin of the appear-
ance of diagonal regions of strong spectral weight �see Figs.
1�a� and 2�a��. The overlap of islands of different energies is
stronger for higher values of disorder in the sample �in-
creased LL broadening �� as well as for higher filling factors.
The relative energy separation between the horizontal lines
will be smaller for larger NF, because in the single-particle
graphene spectrum, the density of LLs increases with energy.
Electron-electron interactions turn these original regions of
strong spectral weight into coherent excitations �the upper-
hybrid mode and the linear magnetoplasmons�. In fact, we
have studied the PHES of graphene for different values of

doping �i.e., NF�3� and disorder broadening � and found
that the physical picture exposed above is unaltered �see Fig.
3�. As a general rule, disorder and doping favor the emer-
gence of linear magnetoplasmons in graphene as compared
to the horizontal magnetoexcitions. For the experimentally
relevant values of � and NF, linear magnetoplasmons there-
fore dominate the PHES of graphene in the integer quantum-
Hall regime. It is worth noticing that, at fixed carrier density,
increasing the filling factor ��NF� is equivalent to effec-
tively lowering the magnetic field. Although Fig. 3 repre-
sents the PHES at fixed values of vF / lB, i.e., fixed magnetic
field, one easily sees that at larger values of NF, most of the
spectral weight is concentrated in the upper-hybrid mode
�see Fig. 3�d��. This mode is the only collective excitation in
the integer quantum-Hall regime that evolves continuously
into the plasmon mode at zero field. In contrast to the upper-
hybrid mode, the linear magnetoplasmons become less in-
tense in the large NF limit and evolve for B→0 into the
incoherent particle-hole continuum.

IV. CONCLUSIONS

In conclusion, the magnetic field particle-hole excitation
spectrum in graphene has been investigated and the results
have been compared to those of a standard 2DEG with a
parabolic band dispersion. Most saliently, the particular LL
quantization in graphene yields linear magnetoplasmon
modes, which are not captured in the usual magnetoexciton
approximation. This is due to the fact that a single-particle
hole process contributes to a given energy in graphene,
whereas for a 2DEG, there are, in general, many processes
contributing to the same energy. As a consequence, the node
structure of the LL wave functions in graphene is evident at
any energy of the PHES, leading to a particular spectrum
where the relevant modes are diagonal, dispersing roughly
parallel to vFq. The dominant role of linear magnetoplas-
mons is enhanced by doping and Landau-level broadening
due to disorder. In addition to linear magnetoplasmons,
electron-electron interactions give rise to the upper-hybrid
mode as well, which is the plasmon mode renormalized by
the magnetic field. This alternative scenario of linear magne-
toplasmons, as opposed to horizontal magnetoexcitons, may
find an experimental proof in the framework of microwave
absorption or inelastic �Raman� light scattering, which has
proven to be a powerful tool for measuring the collective
excitations of the 2DEG in a strong magnetic field, see, e.g.,
Ref. 23.
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